The effects of vasoactivity and hypoxic pulmonary hypertension on extralobar pulmonary artery biomechanics.

نویسندگان

  • Diana M Tabima
  • Naomi C Chesler
چکیده

Loss of large artery compliance is an emerging novel predictor of cardiovascular mortality. Hypoxia-induced pulmonary hypertension (HPH) has been shown to decrease extralobar pulmonary artery (PA) compliance in the absence of smooth muscle cell (SMC) tone and to increase SMC tone in peripheral PAs. We sought to determine the impact of HPH on extralobar PA tone and the impact of SMC activation on extralobar PA biomechanics. To do so, C57BL6 mice were exposed to 0 (CTL) or 10 days (HPH) of hypoxia and isolated vessel tests were performed on extralobar PAs using either a physiological saline solution (PSS), a vasoconstrictor (U46619), two vasodilators (SNP and Y27632) or calcium free medium (relaxant solution; VBRS). The vasodilators and relaxant solution had no effect on extralobar artery diameter suggesting that basal SMC tone is essentially zero in CTL conditions and does not increase with HPH. HPH caused narrowing, decreased circumferential stretch (lambda; p<0.0001), decreased local area compliance (C(A); p<0.0005) and increased incremental elastic modulus (E(inc); p<0.05) in the normal tone state (with PSS). In both CTL and HPH conditions, SMC activation decreased E(inc) (p<0.0005) but also increased wall thickness (p<0.05) such that changes in C(A) with SMC constriction were minimal; only in HPH PAs was a significant decrease with SMC constriction observed (p<0.05). Our results demonstrate that 10 days of hypoxia does not increase extralobar PA SMC tone and that HPH-induced decreases in compliance are caused by narrowing, wall thickening and increases in modulus, not persistent vasoconstriction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of collagen in extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary hypertension.

Hypoxic pulmonary hypertension (HPH) causes extralobar pulmonary artery (PA) stiffening, which potentially impairs right ventricular systolic function. Changes in the extracellular matrix proteins collagen and elastin have been suggested to contribute to this arterial stiffening. We hypothesized that vascular collagen accumulation is a major cause of extralobar PA stiffening in HPH and tested o...

متن کامل

Sustained Hypoxic Pulmonary Vasoconstriction in the Isolated Perfused Rat Lung: Effect of α1-adrenergic Receptor Agonist

Background: Alveolar hypoxia induces monophasic pulmonary vasoconstriction in vivo, biphasic vasoconstriction in the isolated pulmonary artery, and controversial responses in the isolated perfused lung. Pulmonary vascular responses to sustained alveolar hypoxia have not been addressed in the isolated perfused rat lung. In this study, we investigated the effect of sustained hypoxic ventilation o...

متن کامل

Statins and Pulmonary Hypertension in Chronic Obstructive Lung Disease

Chronic obstructive lung disease (COPD) is a chronic multisystem disease with a considerable burden. One of its most common complications is pulmonary artery hypertension (PAH). It has been demonstrated that the development of PAH is correlated with decreased quality of life and survival. Different medications have been proposed for the treatment of PAH, among which one can name statins. Howeve...

متن کامل

Quantitative evaluation of hemodynamic parameters during acute alveolar hypoxia and hypercapnia in the isolated ventilated-perfused rabbit lung

Introduction: Acute respiratory disorders such as obstructive pulmonary diseases and hypoventilation may lead to alveolar hypoxia and hypercapnia which their effects on pulmonary vascular beds are controversial. The aim of this study was to establish the isolated perfused lung setup and investigate the effects of alveolar hypoxia and hypercapnia on pulmonary vascular resistance. Methods: White ...

متن کامل

Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia.

Chronic hypoxic pulmonary hypertension (HPH) is associated with large pulmonary artery (PA) stiffening, which is correlated with collagen accumulation. However, the mechanisms by which collagen contributes to PA stiffening remain largely unexplored. Moreover, HPH may alter mechanical properties other than stiffness, such as pulse damping capacity, which also affects ventricular workload but is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 43 10  شماره 

صفحات  -

تاریخ انتشار 2010